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The main aspect of this work is to establish a comparison between the measured
and the modelled vibroacoustic response of a thin cylindrical pipe excited by
a turbulent internal #ow. The "rst part presents the experiment. A Corcos-like
model of the wall pressure #uctuation is proposed. The vibroacoustic response of
the shell is measured. A numerical method based on a boundary integral
formulation and a matched asymptotic expansion is developed. Computed spectral
densities of the velocity of and acoustic sound pressure radiated by the shell are
compared with experimental results. The comparison shows an agreement within
a few decibels.
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1. INTRODUCTION

Turbulent boundary excitation of a structure is a phenomenon of great practical
importance, particularly in the "eld of high-speed transport technology. The
problem involves the coupling of structural and #uid vibrations. This aspect has
assumed increased importance because of the emergence of problems of dense #uid
loading in the "eld of marine acoustics and #uid machinery. While many studies
have been published on the problem of a thin elastic plate (or membrane) excited by
a turbulent boundary layer, much less is known about the vibroacoustic response of
a shell. This is mainly because during the last decades the turbulent #ow had not
been considered as a major source of noise in regards to other phenomena such as
vortex shedding, propagating plane waves and acoustic high order modes inside the
0022-460X/00/051115#41 $35.00/0 ( 2000 Academic Press
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pipe or mechanical excitation [1]. These sources are now understood and the
turbulent excitation becomes again a "eld of research. To our knowledge, the "rst
attempt to make a realistic comparison of measured and predicted pipe vibration
was made by Clinch [2]; the hypotheses made for the theoretical model (continuous
resonance response) and the results obtained are valid at high frequencies. But only
the "rst resonance frequencies of the shell make a signi"cant contribution to the
sound radiated by the shell. A more recent work was done by HoraH c\ ek [3]. In this
work, similar to ours, the author studied the dynamic response, using normal mode
approach, of a thin shell (using the Goldenveizer}Novozhilov linear theory) in
vacuum, simply supported on its boundary. The shell is excited by a wall pressure
"eld due to internal turbulent #ow of air. Also, in the book by Blake [4] one can
"nd an extensive amount of references and the basic explanation of #ow noise
mechanism and sound radiation by pipes.

This study deals with the particular case of a "nite thin cylindrical pipe excited by
a fully developed turbulent internal #ow. The main hypotheses made here are:
(1) the shell vibration has no in#uence on the structure of the #ow, this means that
the turbulent wall pressure #uctuation acts on the shell as a given random process;
(2) the #ow speed is small enough to be neglected in the wave propagation equation;
and (3) the e!ect of the #uid-loading on the shell motion can be considered as
a small perturbation.

The assumption of non-in#uence of the shell vibration on the wall pressure "eld
is usually admitted for #ow-induced noise and vibration phenomena. It is the only
way to measure the wall pressure "eld on a rigid structure and consider that this
pressure "eld is the same as on the vibrating structure. Here we verify this
assumption by comparing the amplitude of the vibration with a characteristic
dimension of the #ow: the viscous sub-layer thickness dq. Moreover, the acoustic
pressure radiated by the shell is lower than the turbulent pressure to a!ect the wall
pressure "eld.

In the "rst section of this paper, the experimental facility is detailed. Then, in the
second section, the measured characteristics of the wall pressure "eld are presented.
The power spectral density, the correlation lengths and the convection velocity are
included in a Corcos-like model for the cross-spectrum of the wall pressure "eld.
This model is directly used for the numerical predictions. The third part of this
paper deals with the theoretical model of the vibroacoustic response of the shell to
a random excitation. This response is characterized by a cross-power spectral
density, given as a two-dimensional integral over the domain occupied by the
structure of a product between the response of the structure to a point unit force, its
conjugate and the cross-spectrum density of the excitation force. This response is
estimated by a method that combines the resolution of the exact equations (by
a boundary element method) with an asymptotic expansion which takes into
account the low density of the interior #uid with respect to the shell density. But
this problem displays some of the features of a singular perturbation problem. It is
common sense that the presence of a #uid like air inside the shell does not change
the physical properties of the shell. So one can de"ne e as the ratio of the #uid
density to the shell surface density. e is a small parameter in our problem. The
Green representation of the internal acoustic pressure is not de"ned for the cut-o!
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frequencies of the duct. A regular solution is obtained in the form of a matched
asymptotic expansion [5]. Similar methods [6, 7] have been used for membrane or
elastic targets. The last part of this paper presents a comparison between the
theoretical and experimental normal velocities of the shell. The results agree very
well (within a few percent). Some comments conclude the paper.

2. EXPERIMENTAL ARRANGEMENT

Measurements were made in the wind tunnel of the LMFA of Ecole Centrale de
Lyon. The tunnel was specially designed to minimize acoustic contamination by
upstream machinery and ambient noise. The primary air is "rst propelled to a slow
speed by a centrifugal blower located in a room mechanically isolated from the rest
of the building for vibration reasons. Acoustic mu%ers are located both upstream
and downstream of the blower in order to reduce background noise. Then the air
passes through an acceleration section made up of a honeycomb section, two
sections of grids and a contraction with an area ratio of four. Finally, the air arrives
in the last assembly, which is inside a large anechoic chamber. This last assembly,
shown schematically in Figure 1, is made from interchangeable sections of steel
tubing with an internal diameter of 125 mm, a wall thickness of 7)5 mm and an
overall length of about 10)5 m. At the upstream end of the pipe, a honeycomb and
a little step accelerates the formation of the fully developed turbulent #ow. The
bores of the various pipe sections are accurately matched, and mating pipe sections
joined by #anges, so that no disturbances due to discontinuities at the joints were
introduced. The pipe rig is guided over its entire length by a series of supports. The
test section is connected to the rest of the pipe at its downstream and upstream ends
by elastic joints and supported by elastic supports, so that the test section is
e!ectively isolated from the vibration of the rest of the pipe. The measurements
con"rmed a di!erence of 30 dB between the vibration level of the test section and
the rest of the pipe.

The test section is mounted 5)5 m (K45 pipe diameters) downstream of the pipe
entrance to achieve homogeneity and stationarity for the #ow in the region of the
test section.
Figure 1. Pipe rig facility.
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The wall acceleration and the external acoustic pressure were measured for
a 0)46 m long and 0)5 mm wall thickness test section. This thin cylindrical shell was
manufactured from a plane sheet steel, rolled, carefully soldered and heat treated.
The acceleration measurements were made both with very light BruK el and Kjvr
4374 (0)65 g) piezoelectric accelerometers and a laser vibrometer POLYTEC
(OFV-302). As the surface mass of the pipe test section is low (3)9 kg/m2, the
accelerometers introduce a non-negligible added mass e!ect which shifts the modal
frequencies of the structure. The non-contact laser measurements were made to
obtain a better agreement with the calculated vibroacoustic response. The external
acoustic pressure was measured with BruK el and Kjvr 4135 (6)35 mm
external diameter) microphones at distances from the pipe wall ranging from
5 mm to 1 m.

It was assumed that the vibrations of the test section did not modify the turbulent
wall pressure "eld so that the statistical properties of the wall pressure were
measured on the surface of a rigid section (7)5 mm thickness). This assumption was
based on the comparison of the root-mean-square (r.m.s.) value of the displacement
of the test section ((u2

r
)1@2) with respect to the viscous sub-layer thickness of the #ow,

dq. The viscous sub-layer thickness was estimated from the formula given by
Schlichting [8]

dqK5l/uq , (1)

where uq is the friction velocity and l the kinematic viscosity. In the worst case, for
a mean #ow velocity ;

0
K120 m/s, it was found that (u2

r
)1@2K0)26 lm and

dqK12)5 lm. The turbulent pressure sources are actually located beyond the
viscous sub-layer and as the r.m.s. value of the displacement was found to be much
lower than the viscous sub-layer thickness, we concluded that the vibrations of the
test section did not in#uence the turbulent wall pressure "eld.

To measure the turbulent wall pressure, the thin test section was replaced by
a rigid section equipped with nine #ush-mounted BruK el and Kjvr 4135 (6)35 mm
external diameter) microphones. By referring to the assumption of the separation of
the space variables for the cross-spectra model [9], two series of measurements
were made. First, the nine microphones were located along a line in the longitudinal
direction (see Figure 2(a)); intervals varied from 8 to 144 mm with respect to the
reference microphone. Next, the nine microphones were located on a circumference
(see Figure 2(b)) with angular separations varying from 8 to 1203.

The centerline velocity of the #ow inside the pipe varied up to 120 m/s. Flow
velocity measurements were made with a Dantec 55P11 hot-wire probe. The probe
support was guided in the direction transverse to the #ow. By translating the probe
to various known locations along the pipe diameter, the velocity pro"le was
recorded.

The friction velocity was calculated from the measurement of the static pressure
at six locations distributed along the pipe.

All measurements (friction velocity, velocity pro"le, wall pressure, acceleration
response and acoustic pressure) were made for four centerline reference velocities:
60, 80, 100 and 120 m/s.



Figure 2. Longitudinal (a) and circumferential (b) positioning of the microphones.
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All signals were processed by an HP 3566A/67A analyzer (16 tracks, 12)8 kHz
bandwidth). Wall pressure and acoustic signals were averaged over 1000
realizations, so that random errors in the power spectral density were of the order
of 3% or 0)25 dB [10]. Acceleration signals were averaged over 100 realizations
only but the random errors were still less than 1 dB.

3. EXPERIMENTAL RESULTS AND DISCUSSION

3.1. MEAN FLOW VELOCITY

To con"rm that the turbulent #ow in the pipe test section was fully developed,
a number of preliminary experiments were performed. First, the mean velocity
pro"le was measured by using a hot-wire probe. Second, the friction velocity uq and
the resistance coe$cient j were determined from the measurements of the static
pressure along the pipe.

Figure 3 shows a typical velocity pro"le, normalized by the centerline pipe #ow
velocity ;

0
. In this "gure, the experimental data are compared with the empirical

velocity distribution law proposed by Schlichting [8] for fully developed turbulent
#ow in a smooth-walled pipe,

u/;
0
"(2y/D)1@n , (2)

where u is the local velocity at a distance y from the wall and D is the pipe diameter.
The exponent n varies slightly with the Reynolds number R

0
";

0
D/l. For the

particular Reynolds number R
0
"8)9]105, Schlichting gives an exponent n"8)2.

A good agreement is observed in Figure 3(a) between the measurements and the
power law. Similar results have been obtained for other Reynolds numbers ranging
from 5)3]105 to 1)1]]106. It must be noted here that the power law is only an



Figure 3. Typical mean velocity pro"le (R
o
"8)9]105): (a) and Prandtl's law (b). d, experimental

data; (a) *, power law (n"8)2); (b) *, Prandtl's law.
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approximation of the mean #ow pro"le which is not valid in the central region of
the #ow. However, the good agreement between the measurements and this law for
a large range of values of y is generally accepted as a criterion of a fully developed
turbulent pipe #ow.

Another criterion proposed by Sabot [11] is the veri"cation of Prandtl's
universal law of friction,

1

Jj
"2 logA

uN D
l

JjB!0)8, (3)

where uN is the mean #ow velocity and j"8(uq/uN )2. A good agreement is again
found between the experimental data and this law (see Figure 3(b)) and con"rms
that the #ow be considered as fully developed.

3.2. POWER SPECTRAL DENSITY

The power spectral density of the wall pressure #uctuations U0
p
( f ) is displayed in

Figure 4 for the four centerline reference velocities as a function of the frequency f.
The analysis was limited to the frequency range [0, 3200 Hz) which is su$cient in
view of the computation of the vibroacoustic response of the pipe test section. Two
spectral regions are of special interest. In the low-frequency range, below 200 Hz,
some peaks appear as observed by other investigators [12}14]. These peaks have
been identi"ed as longitudinal acoustic modes that occur in the pipe between the
upstream convergent and the exit section. These modes are excited by the
turbulence inside the pipe. Under the idealized conditions of pipe #ow with
a constant velocity pro"le, the frequency of these modes is given by the relation
[15]

f
m
"m (c

i
/2¸

p
) (1!M2)1@2 , (4)

where m is an integer, c
i
the sound speed, ¸

p
the total pipe length (¸

p
K10)5 m) and

M the #ow Mach number. Figure 4 shows the "rst mode around 15 Hz and its



Figure 4. Wall pressure power spectral density for 60, 80, 100 and 120 m/s.
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harmonics. The slight decrease of the frequencies with increasing Mach number is
also observed for the harmonic m!8 (120 Hz). Note that the higher acoustic
modes do not contribute to the wall pressure "eld (no peak above the acoustic
cut-o! frequency of the pipe+1600 Hz). Therefore, the wall pressure exhibits an
acoustic component and a turbulent component. To have further information on
the turbulent wall pressure "eld, some authors have reported signal processing
methods to cancel the acoustic component from the power spectral density of the
wall pressure #uctuations. These methods are based on the principle that the
acoustic "eld is more coherent than the turbulence in the spanwise direction and
can be cancelled either by a temporal subtraction method [16}19] or by a coherent
output power technique [20]. With regard to the computation of the vibroacoustic
response of the pipe test section, the two components of the wall pressure are
needed, thus no noise cancellation techniques have been applied here. In addition,
the "rst structural mode of the pipe test section is around 570 Hz and above this
frequency the turbulent component is largely predominant.

In the high-frequency range, the decrease of the power spectral density is
accentuated by the size e!ect of the microphone. In fact, spatial averaging over the
face of the microphone low-pass "lters the signal and, as a result, small
microphones are more accurate than large microphones in measuring wall pressure
#uctuations. This problem of spatial resolution has been approached by many
authors [9, 21}25] and the Corcos theory is most commonly used to correct
experimental wall pressure data. With the assumption of a uniform sensitivity
distribution over the face of the pressure sensor, Corcos showed that the ratio of the
measured power spectral density to its true value depends only upon the quantity
ur/;

c
where r is the microphone radius and ;

c
the convection speed. In Figure 4,

the dash indicates the frequency limit beyond which the spectral level is assumed to
be attenuated more than 3 dB for ;

0
"60 m/s. This frequency limit is higher than

3200 Hz for the other velocities.



Figure 5. Non-dimensional wall pressure power spectral density scaled on outer variables for 60,
80, 100 and 120 m/s, j, Bakewell et al.;#, Clinch; d, Agarwal.
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In Figure 5, the measured spectral data with no Corcos correction are displayed
with the outer variable scaling in the form

U0
p
( f )/o2

i
;3

0
R versus f R/;

0
, (5)

where R is the pipe radius and o
i
the air density. The scaling law based on the outer

variables is more e$cient for the low-frequency domain (our range of interest). The
scaling laws based on the mixed or inner variable do not provide any collapse of the
experimental date. A fairly good agreement is observed between the power spectral
densities measured at 60, 80, 100 and 120 m/s. Some works [26, 27] have already
demonstrated the e!ectiveness of this scaling law to collapse data in the
low-frequency range. The non-dimensionalized scaling law has two advantages.
First, it allows comparisons with results of other investigators. Thus, in Figure 5,
the measured spectral data are compared with a set of measurements by Bakewell
et al. [28] (air #ow), Clinch [14] (water #ow) and Agarwal [29] (air #ow). Though
there are di!erences in investigation characteristics (pipe radius, velocity, pressure
sensor, etc.), a good agreement is found and con"rms the validity of the present
measurements. Second, an analytical expression of the non-dimensional wall
pressure power spectral density can be deduced from this representation. This
extends the excitation database to any particular #ow velocity. This work is not
presented here because the vibroacoustic response database, and hence the
numerical predictions, is limited to the four reference #ow velocities de"ned above.

3.3. CROSS-SPECTRAL FEATURES OF THE WALL PRESSURE FIELD

A model of the cross-spectrum of the #uctuating pressure "eld /
p
(m, g, f ) is

needed as an input to the numerical predictions. The classical #uctuating pressure
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models at the surface of a rigid body are due to Chase [30] and Corcos [21]. For
a more complete explanation, see recent review papers by Leehey [31], Bull [32] or
the book by Blake [4]. A numerical comparison of the various turbulent boundary
pressure models is presented by Graham [33]. In our study, the cross-spectrum was
analyzed according to Corcos' approach [9, 21],

U
p
(m, g, f )"U0

p
( f )C(m, g, f ) exp(ih(m, f )) , (6)

where U0
p
( f )"U

p
(0, 0, f ). h(m, f ) is the phase function which depends only on the

longitudinal separation m because of the convection phenomena and C(m, g, f )
describes, as a function of frequency, the decay of the coherence of the pressure "eld
as it is convected over a longitudinal distance m and a circumferential distance g.
The space variables separation hypothesis, though discussed by some authors [34],
permits simpli"cation:

C(m, g, f )"A(m, f )B(g, f ). (7)

The coherence has been measured for the four reference velocities and for a wide
range of streamwise and spanwise spacings (0)13)m/R)2)3 and 0)14)
g/R)2)1). The results are displayed in Figure 6 for two frequencies. A number of
interesting features are readily apparent. The "rst observation is that the spanwise
coherence B(g, f ) is much smaller than the streamwise coherence A (m, f ). The
turbulent structures are actually convected in the #ow direction and remain
coherent over long distances whereas the convection phenomenon does not exist in
the spanwise direction. Second, the decay rate is not constant but slowly increases
with frequency both for streamwise and spanwise coherence. Third, the shape of the
evolution of the coherence versus the separation suggests an approximation by
Figure 6. Streamwise and spanwise coherence for 100 m/s and two frequencies (660 and 1200Hz).
Streamwise: s, 660 Hz; d, 1200 Hz. Spanwise: e, 660 Hz; r, 1200 Hz.
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a decreasing exponential function as accepted by many authors,

A(m, f )"expA
!Dm D
¸m ( f )B , B(g, f )"expA

!Dg D
¸g ( f )B , (8, 9)

where ¸m ( f ) and ¸g( f ) are respectively the longitudinal and circumferential
correlation lengths (integral scales). These lengths are frequency dependent and
have been computed for each frequency step (see Figure 7). In the low-frequency
range, the behavior of the longitudinal correlation length is rather perturbed
because this zone is essentially governed by the acoustic component of the pressure
"eld and the exponential "tting is no more valid. After this zone, ¸m ( f ) decreases
slowly with frequency and thus expresses the fact that the smaller #ow structures
associated with higher frequencies remain coherent over shorter distances than
larger turbulent structures. The computation of the circumferential correlation
length is limited in high frequency because the coherence decreases rapidly with
frequency and there are no more enough signi"cant points for the exponential
"tting. In the frequency band [500, 1500 Hz], the correlation length ratio
¸m ( f )/¸g ( f ) is about 5 which is in good agreement with the results of Clinch [14].
Similar computations have been made for other #ow velocities and it was found
that the correlation lengths decrease slowly with decreasing #ow velocity. It must
be noted that for the comparison of the measured and computed power spectral
density of the velocity of the shell, computed up to 3000 Hz, it has been necessary to
extrapolate (by a re-linear extrapolation) the value of the spanwise correlation
length ¸m ( f ).

Originally, Corcos expressed the streamwise and spanwise coherences with the
similarity variables um/;

c
and ug/;

c
in an exponential form, given by

A(m, f )"exp(!c
1
D2n fm/;

c
D ), B(m, f )"exp(!c

2
D2n fug/;

c
D ), (10, 11)
Figure 7. Streamwise ( ) and spanwise ( ) correlation lengths for 100 m/s.
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where c
1

and c
2

are empirically determined constants. Assuming these
relationships, a mean value of 0)15 was obtained for c

1
for;

0
"100 m/s. Values of

c
1

ranging from 0)10 to 0)19 are reported in the literature while some scatter
appears for c

2
[35]. With regard to the numerical predictions of the dynamic

response of the shell, the streamwise and spanwise coherence have been used as
expressed by equations (8) and (9) and a direct reading of the value of ¸m ( f ) and
¸g ( f ) in Figure 7.

The convection velocity ;
c
(m, f ) was obtained from the phase function of the

cross-spectrum by

;
c
(m, f )"

!2n fm
h(m, f )

. (12)

Figure 8 presents the variation of the ratio ;
c
(m, f )/;

0
as a function of frequency

for "xed m. In the low-frequency range, the convection velocity changes rapidly with
m/R; this phenomenon can be again explained by the presence of the acoustic
component. Beyond this zone, the three curves decrease slightly and continuously
with frequency for all m/R. This decrease expresses the fact that the convection
velocity of the large turbulent structures associated with the low frequencies is
higher than the convection velocity associated with the small structures. The
evolution of the ratio;

c
(m, f )/;

0
with respect to m/R is characterized by an upward

shift as m/R increase. Some investigators [26] have already pointed out this
phenomenon. The spacing between microphones acts somewhat as a "lter; the
more it increases the more the contribution of smaller structures is "ltered because
they vanish more rapidly. At larger spacings, the convection velocity is thus
governed by larger structures whose convection velocity is greater than that of
smaller structures. That the ratio;

c
(m, f )/;

0
was found to be between 0)7 and 0)8 is
Figure 8. Measured ratio ;
c
(m, f )/;

0
as function of the frequency (;

0
"100 m/s). m/R values:

, 0)128; , 0)384; , 0)784.
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in good agreement with the literature. Some analytical expressions of the
convection velocity have been proposed [35, 36]. In the paper by Graham [33], the
in#uence of the convection velocity formulation has been studied. Here, no
analytical identi"cation of the convection speed has been attempted and the
numerical predictions use directly the computed values of ;

c
(m, f ) presented in

Figure 8.

3.4. MODEL OF THE CROSS-SPECTRUM

The spectral and cross-spectral features of the wall pressure #uctuations were
analyzed in order to provide a model of the excitation usable for the numerical
predictions. Thus, the cross-spectrum based on the model introduced by Corcos
could be expressed by

U
p
(m, g, f )"U0

p
( f ) expA

!DmD
¸m ( f )B expA

!DgD
¸m ( f )B expA

!i2n fm
;

c
(m, f )B , (13)

where U0
p
( f ), ¸m ( f ), ¸g ( f ) and ;

c
(m, f ) have been measured or computed over

a wide range of frequency and for the four reference velocities 60, 80, 100 and
120 m/s. Our model di!ers from the Corcos one by the dependence of ¸m( f ), ¸g ( f )
and ;

c
(m, f ) on the frequency. Therefore, a database characterizing the excitation

produced by the fully developed turbulent pipe #ow is now available. This database
is completed by the measurements of the vibroacoustic response of the pipe test
section. The accuracy of the excitation model and the numerical computation can
now be appreciated by comparing the numerical predictions with the
measurements of vibroacoustic response.

4. THEORETICAL MODEL

4.1. STATEMENT OF THE PROBLEM

Consider a thin elastic (or viscoelastic) cylindrical shell of "nite length extended
up to in"nity by two rigid cylinders. Let X

i
be the interior domain, formed by the

interiors of the shell and the ba%e, X
e

the exterior domain, and R the domain
occupied by the shell. In cylindrical co-ordinate (z, /, r), R occupies the domain
z3]!¸, #¸[, /3[0, 2n[, r"R. The two semi-in"nite ba%es occupy the
domains R~(z(!¸) and R`(z'#¸). ;M "(;

z
,;

(
, ;

r
) is the displacement

vector of the shell, P
i,e

are the internal and external acoustic sound pressures
radiated by the shell and FM is any representation of the turbulent wall pressure
#uctuation. o

c
is the density of the shell and o

i,e
the densities of the internal and

external #uids.
An important point is that we neglect the in#uence of the internal #ow in the

wave propagation equation. As shown by Sgard and Atalla [37], for a Mach
number less than roughly 0)5, there is a little in#uence of the mean #ow velocity on
the natural vibration characteristics of a plate in contact with air #ow. Only a small



TABLE 1

Evolution of some measured resonance frequencies (Hz) with the Mach number

Mach 0 565 793 920 960 1131 2 1823
Mach 0)2 565 794 920 960 1132 2 1823
Mach 0)3 566 796 920 964 1134 2 1823
Mach 0)4 568 798 921 964 1136 2 1823
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frequency shift of the spectrum of natural frequencies of the plate toward the
low-frequency domain is observed. We have veri"ed that this remains true for our
con"guration. To do this, a series of measurements of the spectrum of the shell
response to an impact excitation hammer with and without #ow was performed.
The results are given in Table 1 in which some measured resonance frequencies are
given for various Mach numbers. One can see that, for the Mach number used in
this study (M(0)4), the #ow inside the shell has a little in#uence on the response of
the shell. The only e!ect that can be noted is a small increase of the "rst "ve
resonance frequencies, the others do not change (at least up to the 18th resonance
frequency 1823 Hz). The #ow inside the shell adds sti!ness to the shell.

The corresponding acoustic pressure P
i,e

and the displacement of the shell
;M (M, t) are the solutions of the following system of partial di!erential equations:

CD!

1
c2
i

L2

Lt2D P
i
(M, t)"0, M3X

i
, (14)

CD!

1
c2
e

L2

Lt2D P
e
(M, t)"0, M3X

e
, (15)

CCO #o
c
h

L2

Lt2D;M (Q, t)#PM (Q, t)"FM (Q, t), Q3R , (16)

Tr L
r
P

i
(Q, t)

o
i

"

Tr L
r
P

e
(Q, t)

o
e

"!

L2;
r
(Q, t)

Lt2
, Q3R, (17)

"0, Q3R~XR` . (18)

Here PM (Q, t)![0, 0, Tr(P
e
!P

i
)] is the pressure di!erence across the surface of the

shell. The trace operator is de"ned as TrP
e,i

(Q)"lim
M?Q

P
e,i

(M), M3X
e,i

, Q3R.
The components of the excitation force FM (Q, t) are (0, 0, F(Q, t)). Tr is the trace
operator; for example Tr L

r
P
i,e

(Q, t) is the value of the normal derivative of the
acoustic sound pressure at the surface of the shell. CO is a thin shell operator. The
"rst model adopted was the classical Donnell}Mushtari [38] operator but the "rst
comparison reveals that this model may be not su$cient for a good description of
the shell. The discrepancy between the experiment and the theory increases with the
frequency. The ratio h/RK1% of the shell studied here seems to be a limit for the
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Donnell}Mushtari operator [38]. We use one of the "nest models of the thin shell
operator, the FluK gge operator [38, 39], which seems to give good results. To these
equations, it is necessary to add boundary conditions for the displacement and
a condition of conservation of the energy of the total system (outgoing wave
condition for the acoustic pressure).

4.2. RESPONSE OF THE STRUCTURE TO THE TURBULENT EXCITATION

The turbulent wall pressure excitation is a space}time random process. Under
some not very restrictive assumptions, such a process can be characterized by
a cross-power spectral density U

p
(Q; Q@, u) where u is the angular frequency. As

seen in the previous section, U
p
(Q; Q@, u) is expressed in separable form. Let (z, /) be

the co-ordinates of Q and (z@, /@) that of Q@; U
p
(Q; Q@, u) is given by

U
p
(Q; Q@, u)"U

p
(m, g, u) , (19)

where m"z!z@ and g"/!/@ are the axial (streamwise) and azimuth (spanwise)
separations. The complete expression of this power spectral density is given in
equation (13). Let [uN (Q; M, u), p

i
(Q; M, u), p

e
(Q; M, u)] be the response of the

system at M to a point unit harmonic normal force (0, 0, d
Q
) applied at Q. The

cross-spectral densities of each component;
j
of the displacement (;

z
,;

(
, ;

r
) and

of the acoustic sound pressure P
i,e

are given by

S
Uj

(M; M@, u)"PRPR

u
j
(Q; M, u)U

p
(Q; Q@, u)u*

j
(Q@; M@, u) dQdQ@ , (20)

S
Pi
(M; M@, u)"PRPR

p
i
(Q; M, u)U

p
(Q; Q@, u)p*

i
(Q@; M@, u) dQdQ@ , (21)

S
Pe

(M; M@, u)"PRPR

p
e
(Q; M, u)U

p
(Q; Q@, u)p*

e
(Q@; M@, u) dQdQ@ , (22)

where u
j
, which is one of the three components u

z
, u
(
, u

r
and p

i,e
are the response of

the shell to a normal point force. u*
j

and p*
i,e

are the complex conjugate of u
j
and p*

i,e
.

The problem is reduced to solving a sequence of time harmonic problems. The main
numerical di$culty is to obtain uN , p

i,e
.

In the following, we consider only time harmonic problems with time
dependency, hereafter omitted, e~*ut.

4.3. GREEN'S REPRESENTATION OF THE PRESSURE

Let k
i,e
"u/c

i,e
be the wave numbers in the internal and external #uids. Let

Gi,e(M; M@) be the Green functions of the interior and exterior Neumann problems
u
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for the Helmholtz equation, de"ned as the solution of

CD#k2
i,eDGi,eu (M; M@)"d

M{
(M)M, M@3X

e,i
,

L
n
N Gi,eu (M; M@)"0 on R~XRXR` , Sommerfeld radiation condition.

One obtains for the acoustic pressure

p
i,e

(M; M@, u)"u2p
i,ePR

u
r
(Q; M@, u)Gi,eu (M@, Q) dQ , (23)

where Geu (M; M@) is given by the inverse Fourier transform with respect to the axial
variable z of the function

GK eu(r, /, f; r@, /@, z@)"!

i
4
H

0
(K

e
d(M; M@))

#

i
4

`=
+

m/~=

J@
m
(K

e
R)H

m
(K

e
r@)

H@
m
(K

e
R)

H
m
(K

e
r) e*m((~({) e~2*nfz{ , (24)

where d(M, M@) is the distance between the two points M(z, /, r) and M@(z@, /@, r@).
H

m
(x) is the Hankel function of the "rst kind of order m, and H@

m
(x) its derivative

with respect to the argument. For simplicity, and because no confusion is possible
between the two kinds of Hankel functions, the superscript (1) of the Hankel
function of the "rst kind has been omitted. J

m
(x) is the Bessel function of the "rst

kind of order m. K2
e
"k2

e
!4n2f2, IK

e
'0. Giu(M; M@) is given by a series of

normal modes [40],

Giu (z, /, r; z@, /@, r@)"+
mn

t
mn

(r, /)t*
mm

(r@, /@) e*smn
Dz!z@D

2is
mn

, (25)

where t
mn

(r, /)"A
mn

J
m
(i

mn
r)e*m( is the normal mode of order (mn) of the guide

section. A
mn

is a normalization factor, s2
mn
"k2

i
!i2

mn
with Is

mn
'0 if Is

mn
O0 and

Rs
mn
'0 if Is

mn
"0, J@

m
( j@

m,n
)"0 and i

mn
"j@

m,n
/R.

Geu(M; M@) is de"ned for any real frequency. By its Green's representation, the
external pressure is known as soon as the normal displacement of the shell is
known. The Green's representation of the internal pressure is not de"ned for the
cut-o! frequencies of the waveguide, i.e., for k

i
"i

mn
[41].

4.4. TRANSFORMATION OF THE INITIAL PROBLEM INTO A BOUNDARY VALUE PROBLEM
INSIDE A FINITE DOMAIN

In order to avoid this problem of non-existence of the solution, the initial
problem is transformed into a boundary value problem inside a "nite domain for
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which the Green's representation of the pressure is de"ned for each frequency. Let
p~ be the cross-section of the cylinder located at z"!¸ and p` that located at
z"#¸. They de"ne three domains X~

i
(z(!¸), X0

i
(!¸(z(¸) and X`

i
(z'¸).

The corresponding acoustic pressures are denoted by p~
i

(Q, M; u), p0
i
(Q, M; u) and

p`
i

(Q, M; u). One has [41]

p~
i

(Q; M, u)"!+
mn

t
mn

(r, /)e~*smn(z`L)Pp~t*
mn

(r@, /@)p0
i
(Q; M@, u) dM@ , (26)

p`
i

(Q; M, u)"#+
mn

t
mn

(r, /)e`*smn(z~L)Pp`t*
mn

(r@, /@)p0
i
(Q; M@, u) dM@ . (27)

These expressions are de"ned for any real frequency. Then the initial problem
reduces to a boundary value problem inside a "nite domain:

(CO
c
!o

c
hu2)uN (Q;Q@, u)!A

0

0

p0
i
(Q; Q@, u) B"A

0

0

d
Q{

(Q) B , G
Q"(z, /, R)

Q@"(z@, /@, R)
3R ,

(28)

(D#k2
i
)p0

i
(M; M@, u)"0, G

M"(z, /, r)

M@"(z@, /@, r@)
3X0

i
, (29)

L
r
p0
i
(Q; Q@, u)"o

i
u2u

r
(Q; Q@, u), G

Q"(z, /, R)

Q@"(z@, /@, R)
3R , (30)

L
z
p0
i
(Q; Q@, u)"$+

mn

t
mn

(r, /)is
mnP

2n

0
P

R

0

t*
mn

(rA, /A)p0
i
(QA; Q@, u)rAdrAd/A,

i
g
j
g
k

Q"($¸, /, r)

Q@"($¸, /@, r@)
QA"($¸, /A, rA)

3p$ , (31)

where

CO
c
uN "CO uN #u2 A

0

0

o
e
:RGeuu

r
B (32)

is the shell operator which includes the external #uid loading. To this, it is necessary
to add boundary conditions for uN (Q, M; u). Equation (31) is a non-local boundary
condition. The equations governing the coupling of the shell to an external #uid
have a unique solution for any real frequency.
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4.5. LIGHT FLUID APPROXIMATION AND MATCHED ASYMPTOTIC EXPANSION

In this section, to shorten the paper, we present only the method. The details of
the analysis are given in Appendix A. When the density of the #uid is small
compared to that of the shell, it is possible to build a solution of the problem by
a perturbation method [42] which is powerful from a numerical point of view.
Now let e"o

i
/o

c
h which is a small parameter for a steel thin shell in contact

with air.
The method of matched asymptotic expansion is based on the remark that we

can build two di!erent expansions of the response of the shell (displacement or
acoustic pressure inside the shell). The outer expansion which is valid far from the
cut-o! frequencies and the inner expansion which is valid at and near these
frequencies. Besides, in this method, it is assumed that there exists an interval,
named the overlap interval, around the cut-o! frequencies in which the inner and
outer expansions are both valid. These expansions are combined to construct
a composite expansion valid everywhere.

4.5.1. Outer expansion

The solution is sought as a formal series in e:

uN o";M 0#e;M 1#2, (p0
i
)o"W0#eW1#2. (33, 34)

It is to be noted that e has the dimension of the inverse of a length. But, even if we
use non-dimensional (or preferably reduced) equations its physical dimensions do
not change. A length remains a length even if it is measured in a unit adapted to the
problem. If we use a small non-dimensional parameter e

0
"o

i
/o

c
, the formal series

of uN o reads

uN o"=M 0#e
0
=M 1#e2

0
=M 2#2,

and it can be shown that =M 0";M 0, =M 1";M 1/h, 2 ,=M n!;M n/hn, and the two
series are identical; we have chosen the small parameter e which appears to be most
signi"cant for the #uid loading of thin structure. Let CO u be the Green operator of
the "nite shell loaded by the external #uid (de"ned for each frequency). Only
a numerical solution of it is known. It is easy to show that the zeroth order
approximation is given by

W0"0, ;M 0"CO u(eN
r
d
Q
), (35, 36)

where eN
r

is the unit vector normal to the shell. In the same way, the "rst order
approximation is given by

W1"!o
c
hu2+

mn

t
mn

(r, /) PR

;0
r
t*
mn

(r@, /@)
e is

mn
Dz!z@D

2is
mn

, ;M 1"CO u(eN
r
W1). (37, 38)
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As previously stated, this solution is not de"ned at the cut-o! frequencies of the
internal waveguide. It is then necessary to seek another approximation [6], which is
de"ned close to and at these frequencies (the inner expansion).

4.5.2 Inner expansion

Close to the angular frequency u
pq
"ci

pq
, one can de"ne u"u

pq
(1#e2a). The

solution is sought again as a power series in e:

uN i"<M 0#e<M 1#2, (p0
i
)i"WI 0#eWI 1#2. (39, 40)

Then

s
mn
O0 ∀e and (m, n)O(p, q), s

pq
Ki

pq C1#
ae2
4

#2D eJ2a . (41, 42)

One shows that the zeroth order approximation depends on an undetermined
constant A

pq
:

WI 0"A
pq

t
pq

, <0"CO u[eN
r
d
Q
#eN

r
A

pq
t

pq
]. (43, 44)

To evaluate it, one can write the equation satis"ed by WI 1 which is a homogeneous
equation with non-homogeneous boundary conditions on R. A solution exists if
and only if the data satisfy a compatibility condition which leads to the value of
A

pq
:

A
pq
"!

u2
pq

o
c
h:R(CO u(eN

r
d
Q{

(Q)))
r
t

pq
(Q)*dQ

2ii
pq

J2a#u2
pq

o
c
h:R (CO u(eN

r
t

pq
(Q)))

r
t*

pq
(Q) dQ

. (45)

The next step is to show that the validity domains of the inner and outer
expansions overlap on a small domain around the cut-o! frequency u

pq
. To do this,

it is necessary to verify that the matching principle is satis"ed [5]. That is
(uN i)o"(uN o)i, or, in other words, the outer expansion of the inner expansion is equal
to the inner expansion of the outer expansion. Then, the composite expansion,
regular for each frequency, is given by

uN "uN o#uN i!(uN i)o . (46)

Practically, the outer expansion and the exact solution give quite identical results
away from the cut-o! frequencies. It seems preferable to use the numerical solution
of the exact equations outside of these frequency domains. On the other hand, the
inner expansion is necessary around these frequencies.

4.6. BOUNDARY INTEGRAL EQUATION METHOD TO SOLVE THE DETERMINISTIC HARMONIC
BOUNDARY VALUE PROBLEM

The method developed in this section is valid for any frequency but the cut-of
frequencies of the interior waveguide.
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Owing to the 2n-periodicity of the geometry, each quantity is developed into
a Fourier series with respect to the angular variable /. One has

uN (z,/)"
=
+

m/~=

uN
m
(z)e*m( , p

i,e
(z, /, r)"

=
+

m/~=

p
mi,e

(z, r)e*m( , (47, 48)

FM (z, /)"
=
+

m/~=

FM
m
(z)e*m( . (49)

For each angular harmonic, the equations of the problem are

CO
m
uN
m
(z)!u2o

c
huN

m
(z)"FM

m
(z)!pN

m
(z) on R , (50)

(D#k2
i,e

) p
mi,e

(z, r)"0 in X
i,e

, (51)

Tr L
n
p
mi,e

(z, R)"u2o
i,e

u
rm

(z) on R , (52)

pN
m
(z)"(0, 0, Tr p

mi
(z, R)!Tr p

me
(z, R)) , (53)

u
zm

($¸)"u
(m

($¸)"u
rm

($¸)"u@
rm

($¸)"0, (54)

Sommerfeld condition for p
mi,e

(z, r), (55)

where CO
m

is the angular harmonic m of the thin shell operator and u@
rm

(z) is the
derivative with respect to z of u

rm
(z). This problem is solved by using a boundary

integral equation method [43]. The main di$culty of this method is that it requires
the knowledge of the Green functions of the various operators involved.

4.6.1. Boundary integral equation method

As previously seen, the acoustic sound pressures are expressed in terms of the
normal displacement of the shell. One has

Trp
mi,e

(z, R)"$u2o
i,e

R P
L

~L

u
rm

(z@)Gi,e
mu (z!z@) dz@ . (56)

The kernels denoted by Gi,e
mu(z) are given by

Ge
mu (z)"P

=

~=

H
m
(K

e
R)

K
e
RH@

m
(K

e
R)

e2*nzf df , Gi
mu(z)"

m
R2

=
+
n/0

W
mn

W*
mn

"
mn

s
mn

e*smn
DzD ,

(57, 58)

where K2
e
!k2

e
!4n2f2 with IK

e
'0, s2

mn
"k2

i
!i2

mn
and W

mn
""

mn
J
m
(i

mn
R),

" is a normalization factor.

mn
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One can now introduce the Green tensor of the in vacuo thin shell operator
CO
m

de"ned by

(CO
m
!u2o

c
hIO )CO

m
"dIO , (59)

where d is the Dirac measure and IO is the identity matrix. This tensor is calculated
without any di$culty by the residue integration theorem. CO

m
is a 3]3 symmetrical

matrix and each of its components is given by a linear combination of four complex
exponential functions [43].

The solution of the problem is then given by the integral equations.

uN
m
(z)"CO

m
(FM

m
!pN

m
#SM

m
) (z) , (60)

pN
m
(z)"(0, 0, u2R P

L

~L

u
rm

(z@) (o
e
Ge

mu(z!z@)#o
i
Gi

mu (z!z@)) dz@) , (61)

where

CO
m
(FM

m
) (z)"P

=

~=

CO
m
(z!z@)FM

m
(z@) dz@ , CO

m
(pN

m
) (z)"P

L

~L

CO
m
(z!z@)pN

m
(z@) dz@ ,

(62, 63)

CO
m
(SM

m
) (z)"(Cr

zm
(zG¸)s$¸

1m
, C r

(m
(zG¸)s$¸

2m
, C r

rm
(zG¸)s$¸

3m
# C r@

rm
(zGl )s$¸

4m
) .

(64)

The boundary sources SM
m

(which are scalars) have been introduced to take into
account the boundary conditions at the edges of the shell. These sources introduce
eight unknowns (s$¸

im
, i"1, 2 , 4) calculated by applying the boundary conditions

for the displacement.

4.6.2. Numerical solution of the boundary integral equations

We have chosen the simplest numerical method, the collocation method [44], to
solve these equations. The unknowns are sought as a linear combination of simple
known functions (like piecewise constant functions, spline functions or orthogonal
polynomial) b (z), c(z),

uN
m
(z)"

M
+
j/1

uN j
m
b
j
(z), p

m
(z)"

N
+
j/1

pj
m
c
j
(z) ,

and the integrals are satis"ed at a "nite number of points (the collocation points).
Compared with the Galerkin method for which the distance between the solution
and its approximation is minimized with respect to a norm, there is less
computational e!ort (we need only the computation of one-dimensional integrals).
Moreover, we have chosen the simplest approximation functions, i.e. piecewise
constant functions. The number of collocation points is taken as equal to the
number of unknowns (the coe$cients of the linear combinations uN j

m
and pj

m
). The
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precision of the method is achieved by increasing the number of collocation points
M and N. In the general case, it is classical that a minimum of six points per
wavelength is necessary to achieve a good precision (less than 1 dB). The main
di$culty is a a priori knowledge of this wavelength which depends not only on the
mechanical properties of the shell but also on its geometrical characteristics (such
as length) and of the #uid loading. Obviously, close to a resonance frequency of the
shell, it is necessary to re"ne the discretization (up to a 20th of the wavelength). For
our problem, both #uids have a little in#uence on the shell, except close to the
resonance frequencies, and then a rough approximation (two or three points per
wavelength) of the pressure is su$cient.

After discretization, one obtains a linear system of 3M#N#8 simultaneous
equations: AO

m
XM

m
"BM

m
, in which AO

m
is an almost full matrix. The coe$cients of it

depend analytically on the frequency u. Except close to the cut-o! frequencies, this
system is solved without di$culty by using a LU decomposition. By anticipating
the results, one can remark that in the Green representation of the pressure, the
integral between the normal displacement and the Green functions is multiplied by
u2 and while the density of the #uid is small, at high frequency the singularity of
G i

mu(z) close to the cut-o! frquencies introduces numerical instabilities (some extra
diagonal terms are very important) and leads to very bad conditioning of the linear
system.

5. NUMERICAL RESULTS AND COMMENTS

The mechanical characteristics of the shell are: length"46 cm, radius"6)25 cm,
thickness"0)5 mm, Young's modulus, E

0
"215 GPa, the Poisson ratio, l"0)32,

density, o
c
"7850 kg/m3. Because the measurements reveal that the shell has

a small damping, it has been introduced as a simpli"ed viscous damping in the form
of a complex Young's modulus E"E

0
(1!if), f'0. The negative sign comes from

the time dependency exp(!iut) to ensure a "nite value when the time increase.
With a time dependency exp(#iut), the complex Young's modulus has to be
written E"E

0
(1#if). The value f"5]10~4 was estimated from the

measurements. The #uids are air with density o
i,e
"1)3 kg/m3 and sound speed

c
i,e
"340 m/s.

5.1. CUT-OFF FREQUENCIES AND MATCHED ASYMPTOTIC EXPANSIONS

In Table 2, one can "nd the "rsts (less than 10 kHz) cut-o! frequencies (more
precisely, their integer part) of the waveguide.

In our problem, the response of the shell is estimated to be below 3200 Hz, and so
as can be seen, only a few cut-o! frequencies may cause problems for the
computations corresponding to the experiment analyzed here. In Figures 9}14 we
present the results of the matched asymptotic expansion around (Figures 9, 11, and
13) and close to (Figures 10, 12 and 14) three cut-o! frequencies: f11

i
, f21

i
and f31

i
.

These frequencies are indicated in the "gures by a vertical line. Obviously at
these frequencies, the displacement, calculated by solving the boundary integral



TABLE 2

Cut-o+ frequencies (Hz) of the waveguide

f mn
i

n"1 n"2 n"3 n"4

m"0 0 3318 6074 8808
m"1 1594 4616 7391 *

m"2 2644 5806 8632 *

m"3 3637 6940 9823 *

m"4 4604 8037 * *

m"5 5557 9108 * *

Figure 9. Comparison of the exact (*) and composite (} - }) expansion solutions: m"1.

Figure 10. Enlargement of Figure 9 around f 11
i

.
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Figure 11. Comparison of the exact (*) and composite (} - }) expansion solutions: m"2.

Figure 12. Enlargement of Figure 11 around f 21
i

.
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equations, is not de"ned. All the curves show the normal displacement of the shell
u
3m

at the excitation point#¸/J2 with m"1 (Figures 9 and 10), m"2 (Figures
11 and 12) and m"3 (Figures 13 and 14). The continuous curve represents the
displacement solution of the boundary integral equations developed in the previous
section, while the discontinuous curve is the result of the composite expansion. For
the various angular harmonics, the composite expansion gives very good results



Figure 13. Comparison of the exact (*) and composite (} - }) expansion solutions: m"3.

Figure 14. Enlargement of Figure 13 around f 31
i

.
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except close to the resonance frequencies of the shell. Nevertheless, close to the
cut-o! frequencies, where the solution of the boundary integral equations becomes
in"nite, the composite expansion gives very precise results. The Green
representation of the pressure is singular only very close to the cut-o! frequencies
because the zeros of the Bessel functions are computed [45] by using 12 signi"cant
digits and the singularity of the denominator is proportional to Jf!f mn

i
. The zero
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of it is known with at least six digits. Close to some resonance frequencies of the
#uid-loaded shell, the results of the composite expansion are deteriorating. The
main di!erence between the exact and approximate solutions is the amplitude of
the shell response. This is due to the outer expansion in which taking only two
terms does not give su$ciently precise results. The internal #uid acts on the shell as
a smaller order e!ect (the internal pressure is of order e, see equations (36) and (38))
and then, close to the resonance frequencies of the shell where it has a strong
in#uence, it is necessary to use more terms in the outer expansion to describe
correctly the in#uence of the internal #uid. Nevertheless with a "rst order
expansion, the damping, introduced both by the material damping and by
#uid-loading e!ects (energy lost at in"nity), is not modi"ed (the relative bandwidth
is preserved).

5.2. RESONANCE FREQUENCIES OF THE SHELL

5.2.1. Modal identixcation

We present here visualizations of the spectral density velocity of the shell, excited
by the turbulent internal #ow (for 100 m/s), close to three resonance frequencies.
Measurements were obtained by a laser beam situated roughly at 2 m in front of the
shell as it can be seen on the photograph of Figure 15. The welding joint is exactly
in front of the beam. The image was obtained by using 32 points on the half
circumference and 8 points along the generating axis. Because the laser beam can
only do radial measurements, the values obtained close to the upper and lower
Figure 15. Laser measurements.



Figure 16. Mode 3, 1.

Figure 17. Mode 4, 1.

1140 C. DURANT ET AL.
parts of the visualization plane are biased. Figure 16 presents the spectral density of
the velocity for the mode (3, 1), Figure 17 that for the mode (4, 1) and Figure 18 that
for the mode (5, 3). For all the modes presented here, the odd harmonic modes (i.e.,
the odd values of m) of the angular Fourier series have a minimum value on the



Figure 18. Mode 5, 3.
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welding joint while the even harmonic modes have a maximum on it. The welding
joint introduces a &&singularity'' that &&de"nes'' in some way the angular origin. It is
to be noted that we have not observed modes doubled (as can appear for not
exactly cylindrical shell). The shell used in this experiment is a quite perfect
cylindrical shell.

5.2.2. Comparison between the measured and computed resonance frequencies

In Table 3 we present the "rst resonance frequencies of the #uid-loaded shell.
These frequencies, which are the ones for which free oscillations are possible, are the
frequencies that cancel the determinant of the matrix AO

m
(u) which analytically

depends on the frequency. Let us brie#y recall that the oscillations which
correspond to the resonance modes are di!erent (for frequency-dependent
boundary condition) from the eigenmodes [40]. These frequencies are real for an
elastic shell in vacuo and are calculated by looking for the real zero of the
determinant of an 8]8 matrix of complex exponentials which is done very quickly.
When the shell is slightly damped (by viscous damping or by #uid loading), its
resonance frequencies are close to the real ones. Then, the complex resonance
frequencies are calculated by using a simple Newton routine that converges very
quickly (a few iterations) with the real frequencies as starters. In Table 3, the
relevant "rst resonance frequencies for our problem are given. The in vacuo
resonance frequencies have also been indicated (second lines for each harmonic) as
italic and the measured (with an impact hammer) resonance frequencies as bold
(third lines for some harmonics). It is to be noted that while we give only the
frequencies for the seven "rst harmonics, it has been necessary for a complete model
of the shell of the experiment to treat the 10 "rst harmonics.



TABLE 3

First resonance frquencies (Hz) of the shell: f.l, -uid-loaded shell; i.v., in vacuo shell;
m, measurement

f
mn

n"1 n"2 n"3 n"4 n"5 n"6

m"1 f.l. (2105,!4)9) (4249,!1)
i.v. (2095,!0)4) (4241,!5)4)

m"2 f.l. (972,!1)6) (2223,!8)8) (3730,!9)
i.v. (982,!0)7) (2247,!1) (3723,!1)3)
m 919 = =

m"3 f.l. (574,!0)7) (1305,!1)3) (2255,!6)2) (3306,!12)5)
i.v. (577,!0)7) (1314,!1)1) (2273,!1)4) (3336,!1)5)
m 565 1301 * *

m"4 f.l. (570,!0)5) (944,!1)1) (1552,!1)5) (2293,!2)1)
i.v. (572,!0)5) (948,!1) (1559,!1)5) (2306,!1)7)
m 571 945 1560 *

m"5 f.l. (795,!0)4) (957,!0)9) (1300,!1)4) (1794,!1)8) (2387, !2)
i.v. (797,!0)4) (960,!0)8) (1305,!1)4) (1801,!1)8) (2397, !2)
m 795 960 1311 1815 *

m"6 f.l. (1134,!0)4) (1208,!0)7) (1385,!1)2) (1683,!1)6) (2085, !2) (2566,!2)2)
i.v. (1137,!0)4) (1212,!0)7) (1390,!1)1) (1688,!1)6) (2092, !1)9) (2574,!2)2)
m 1131 1206 1387 1700 * *

m"7 f.l. (1550,!0)4) (1592,!0)8) (1690,!1) (1863,!1)4) (2120, !1)8) (2453,!2)
i.v. (1554,!0)3) (1597,!0)6) (1694,!0)9) (1868,!1)3) (2125, !1)7) (2460,!2)
m 1544 1589 1689 1874 * *
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These results call for a few comments. First of all, as revealed by the very small
imaginary part of the resonance frequencies, the shell is quite undamped and &&rings
like a bell''. Secondly, the frequency shift induced by the presence of the #uids
cannot be reduced to only the usual added mass e!ect (which decreases the real part
of the resonance frequencies). While the majority of the real parts of the resonance
frequency decrease with the #uids, some have real parts that increase (see e.g., f

11
,

f
23

); this e!ect is caused by the internal #uid which act as a spring (when the internal
#uid is not taken into account, the resonance frequency f

11
is given by 2093!i4)9,

and f
23

is given by 3721!i9). Another important point is that the #uid loading has
a little in#uence on the shell. For most of the resonance frequencies, there is no
dissipation introduced by the #uid; the imaginary part of the damped in vacuo and
#uid-loaded resonance frequencies are identical (to the precision of the numerical
method). For these frequencies, the response of the shell is strongly dependent on
viscous damping. Only a few resonance frequencies present a signi"cant increase of
their imaginary part when the #uid is taken into account (see, e.g.,
f
11

, f
21

, f
22

, f
32

, f
33

, f
44

,2). Then, only the resonance modes corresponding to
these frequencies are a!ected by the presence of the #uid and then radiate into it.
The shell does not radiate well at low frequencies.
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The comparison with experimental results is very good (if one excepts f
21

, the
relative error is less than 2%) and correspond to the precision at which the
mechanical parameters of the shell (built with industrial material) are known.

6. COMPARISON OF THE MEASURED AND COMPUTED VIBROACOUSTIC
RESPONSE OF THE SHELL

6.1. VELOCITY OF THE SHELL

In this section, we present a comparison, given in Figure 19, between the
measured and calculated power spectral densities of the velocity of a point on the
shell S

Vr
"!u2S

Ur
, where S

Ur
is given by equation (20). The measurement point is

located at 20 cm upstream of the extremity of the shell. The velocity at the center of
the pipe is 100 m/s.

Again, the results are very good. The results are su$ciently precise for the
acoustician. Except at low frequency where the measurements seem noisy and very
close to some resonances of the shell, where the amplitude is very sensitive to the
damping of the experimental set-up, the two curves are in good agreement within
the accuracy of the measure which has about 50 dB dynamic range. With
a third-octave analysis, the discrepancy between the experiment and the theory is
about 2 dB (see Figure 20). It must be noted that due to the limited measurement
dynamic range, the minimal levels of the shell response are overestimated. The
models of the #uid-loaded shell and of the turbulent pressure #uctuations are very
precise. Ten angular harmonics have been taken into account. The frequency step is
1 Hz. It is to be noted that the computation is very fast: less than 1 h on a 400 MHz
PC. Because the #uid has a small in#uence on the shell, one can compute the
Figure 19. Power spectral density of the velocity of the pipe, } - }, model; *, measurement.



Figure 20. Comparison between the measured ( ) and computed (h ) mean (third-octaves) power
spectral densities of the velocity of the pipe.
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dynamic response for the shell in vacuo excited by the turbulent wall pressure
#uctuations with a fairly good agreement. But some of the resonance frequencies
are shifted up to 20 Hz and their amplitudes show an increase of about 20 dB.
Moreover, the boundary element method is so e$cient that the computation times
for the evaluation of the response of the #uid-loaded and in vacuo shells are quite
identical.

6.2. ACOUSTIC PRESSURE RADIATED BY THE SHELL

The last results, given in Figure 21, show a comparison between computed and
measured power spectral density of the pressure outside the shell S

Pe
given by

equation (22). Figure 22 presents the results with a third-octave analysis. The
microphone is situated at 10 cm upstream of the extremity of the shell at a radial
distance of 5 mm. Such a small distance from the shell was necessary because, as it
has been seen, the shell does not radiate well at these frequencies. Except at low
frequency, the measurements are not very good. Even if the two curves look similar,
the amplitude of the resonance modes is always underestimated and leads to a bad
third-octave analysis at high frequency. Another limitation of the comparison lies
in the fact that above 1800 Hz the sound radiation by the pipe conveying the air
#ow has a level comparable to that of the test section. The shaded zone that appears
in Figure 21 is a frequency range where the comparison between theory and
experiment is not signi"cant.

At 20 cm from the shell the frequency measurements are very di$cult below
3000 Hz because only a small number of modes contribute to the radiation of the
shell (roughly four or "ve). Only four or "ve peaks emerge from the background
noise. However, from a theoretical point of view, it is not very important that the



Figure 21. Power spectral density of the pressure radiated by the pipe. } - }, model; *,
measurement.

Figure 22. Comparison between the measured ( ) and computed (h) mean (third-octaves) power
spectral densities of the pressure radiated by the pipe.
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microphone is close to or far from the shell. The only di$culty is that the
computation of the external pressure needs the estimation of a Fourier integral that
has a slow convergence for a measurement point close to the shell. Then one can do
a precise computation around the resonance modes of the shell and a rough one far
from these. The interpolation obtained is not very precise but this is not important
because the measurements obtained far from the resonance frequencies are noisy.
At high frequency, we cannot compare the measurements because the turbulence
model is not valid above 3000 Hz. This is due to the problem of spatial resolution of
the microphones measuring the wall pressure #uctuations which introduces
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a frequency limitation (close to 3500 Hz at 100 m/s) of the turbulence model. It has
been necessary to take into account the "rst nine harmonics. Close to the emergent
peaks, the frequency step is 2 Hz while far from these it is 20 Hz. The computation
time is about 12 h at 5 mm and 1 h at 20 cm (on a 400 MHz PC).

7. CONCLUSION

In this paper, a comparison between the measured and the computed
vibroacoustic response of a ba%ed cylindrical shell excited by a fully developed
turbulent internal #ow was presented. The numerical predictions are based, on the
one hand, on a theoretical model and, on the other, on an experimental
identi"cation of the wall pressure excitation.

The theoretical model gives precise results with a very low computational cost.
The composite expansion provides very good results close to the cut-o! frequencies
of the shell. Obviously, with more complicated geometry or material, the
methodology developed here is not applicable but remains useful for a very fast
parametric study.

The wall pressure excitation was described by a Corcos-like model which was
easily obtained from the measurement of the cross-spectral density of the wall
pressure #uctuations. The energetic (U0

p
( f )), space (¸m ( f ), ¸g ( f )) and convective

(;
c
(m, f )) features exhibit standard behaviors for a fully developed turbulent pipe

#ow.
In conclusion, the results show a very good agreement between the measured and

predicted velocity response of the shell. The resonance frequencies were estimated
within few percents and the error of the level was limited to 2 dB per third octave.
Nevertheless, some points remain to be examined.

Because the extension to the case of heavy #uids is very important from an
industrial point of view, it is necessary to verify if the theoretical methodology
employed here remains valid for water for instance. Another aspect is that of the
in#uence of the #ow on the vibration of the shell. While in air, for Mach numbers
less than 0)5, it seems that the #ow has little in#uence, for higher speed #ow and
heavy #uids, it could be necessary to take it into account.

For the wall pressure excitation, it will be interesting to extend the database to
any particular #ow velocity owing to non-dimensional representation of the wall
pressure characteristics. Moreover, it will be useful to judge the sensitivity of the
parameters of the excitation model on the calculated response. Finally, for our
con"guration, it has been shown that the Corcos-like model describes well the wall
pressure excitation. However, we can wonder whether other models [46}48] will
give as good results as those obtained here.
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APPENDIX A

In this appendix, we give details on the two perturbation expansions used to
construct the composite expansion. Let us start from the boundary value problem
given by equations (28)}(31) and boundary conditions for the displacement.
This system is given by

(CO
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Equation (A2) represents the boundary condition for a clamped shell [38, 39].
Let e"o

i
/o

c
h, which is a small parameter for a thin steel shell in contact

with air.

A.1. OUTER EXPANSION

Far from the cut-o! frequencies of the waveguides, the solution of the previous
equations is sought as a formal series in e:

uN o";M 0#e;M 1#2, (p0
i
)o"W0#eW1#2.

Substituting these two expansions into equations (A1)}(A5), and
collecting coe$cients of like power of e on both sides of each equation yields the
following.
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To order e0,
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W0(M; M@, u) is the solution of an homogeneous boundary value problem; if the
wavenumber k

i
is not an eigen-wavenumber, it is obvious that one obtains

W0(M; M@, u)"0, ∀M, M@X0
i

[40].
Then;M 0(Q; Q@, u) is the response of the shell loaded by the external #uid excited

by a unit point force, given by
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r
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r
is the unit vector normal to the shell and CO u is the Green operator of the

"nite shell loaded by the external #uid (de"ned for each frequency).
The "rst order approximation is obtained in a similar way. Let W1 be the

solution of
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If the wavenumber k
i
is not an eigen-wavenumber, one easily can show that
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Now;M 1(Q; Q@, u) is the response of the shell loaded by the external #uid excited
by a pressure force corresponding to the acoustic pressure radiated in the interior of
the waveguide by the shell that has the displacement ;M 0(Q; Q@, u). That is

;M 1(Q; Q@, u)"CO u(eN
r
W1(Q; Q@, u)) .

It is to be noted that (p0
i
)o is of order O(e), that is a smaller order e!ect. But when

the amplitude of the shell ;M 0(Q; Q@, u) becomes important, say at a resonance
frequency of the shell loaded by the external #uid, it may be necessary to take into
account more terms in the outer expansion. That is, one needs to write

uN o";M 0#e;M 1#e2;M 2#2, (p0
i
)o"W0#eW1#e2W2#2,



1152 C. DURANT ET AL.
where W2(M; M@, u) and ;M 2(Q; Q@, u) are given by

W2(M; M@, u)"!o
c
hu2 P&

;1
r
(M; Q@, u)Giu(M@; Q@) dQ@

;M 2(Q; Q@, u)"CO u(eN
r
W2(Q; Q@, u)) .

These terms are given by multi-dimensional integrals and are very expensive to
compute. We have not implemented it.

Obviously, when the driving frequency draws near a cut-o! frequency of the
waveguide, s

mn
tends to zero and the integral that appears in equation (A6) is not

de"ned. Then it is necessary to look for an other approximation valid at these
frequencies: the inner expansion.

A.2. INNER EXPANSION

Close to the angular frequency u
pq
"ci

pq
, let us de"ne u"u

pq
(1#e2a). a is

a tuning parameter measuring the distance from the cut-o! frequency. Then
one has s2

pq
"i2

pq
(1#e2a2)!i2

pq
"i2

pq
(2e2a#e4a2). Then s

pq
"i

pq
eJ2a#O(e2).

s
mn

is never equal to zero for all e. The solution is sought again as a power series
of e:

uN i"<M 0#e<M 1#2, (p0
i
)i"WK 0#eWI 1#2.

Again, one substitutes these two expansions into equations (A1}A5). Collecting
coe$cients of like power of e on both sides of each equation yields the following.

To order e0,

G
(CO

c
!o

c
hu2

pq
)<M 0(Q;Q@, u

pq
)"A

0

0

d
Q{

(Q)B#A
0

0

WI 0(Q; Q@, u
pq

)B , G
Q"(z, /, R)
Q@"(z@, /@, R)

3R ,

<M 0(Q; Q@, u
pq

)"01 , L
z
<0

r
(Q; Q@, u

pq
)"0, Q"($¸, /, R), Q@"($¸, /@, R) ,

(D#k2
ipq

)WI 0 (M; M@, u
pq

)"0, M"(z, /, r), M@"(z@, /@, r@)3X0
i
,

L
r
WI 0(Q; Q@, u

pq
)"0, Q"(z, /, R), Q@"(z@, /@, R)3R ,

L
z
WI 0(Q;Q@,u

pq
)G +

mnOpq

t
mn

(r,/) is
mnP

2n

0
P

R

0

t*
mn

(rA, /A)WI 0(QA;Q@,u
pq

)rA drAd/A"0,

Q"($¸, /, r), Q@"($¸, /@, r@) , QA"($¸, /A, rA)3p$ .
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Now let WI be the solution of the last three equations of the previous system:

i
g
g
j
g
g
k

(D#k2
ipq

)WI 0 (M; M@, u
pq

)"0, M"(z, /, r), M@"(z@, /@, r@)3X0
i
,

L
r
WI 0(Q; Q@, u

pq
)"0, Q"(z, /, R), Q@"(z@, /@, R)3R ,

L
z
WI 0(Q; Q@, u

pq
)G +

mnOpq

t*
mn

(r, /) is
mnP

2n

0
P

R

0

t*
mn

(rA, /A)WI 0(QA; Q@, u
pq

)rAdrAd/A"0,

Q"($¸, /, r), Q@"($¸, /@, r@) , QA"($¸, /A, rA)3p$.

W0(M; M@, u) is the solution of an homogeneous boundary value problem, if the
wavenumber k

i
is a simple eigen-wavenumber, it is obvious that one obtains

W0(z, r, /; z@, r@, /@, u)"A
pq

t
pq

(r, /), ∀M, M@ where A
pq

is an undetermined
constant. (p0

i
)i is of order O(1). It is su$cient to use a zeroth order expansion for the

pressure. The displacement is given by

<0(Q; Q@, u
pq

)"CO upq
[eN

r
d
Q{

(Q)#eN
r
A

pq
t
pq

(Q)].

To evaluate the constant A
pq

, one writes the equation satis"ed by WI 1 which is
a homogeneous equation with non-homogeneous boundary conditions on R :

i
g
g
g
j
g
g
g
k

(D#k2
ipq

)WI 1(M; M@, u
pq

)"0, M"(z, /, r), M@"(z@, /@, r@)3X0
i
,

L
r
WI 1(Q; Q@, u

pq
)"o

c
hu2

pq
<0(Q; Q@, u

pq
), Q"(z, /, R), Q@"(z@, /@, R)3R ,

L
z
WI 1(Q; Q@, u

pq
)G +

mnOpq

t
mn

(r, /)is
mnP

2n

0
P

R

0

t*
mn

(rA, /A)WI 1(QA; Q@, u
pq

)rA drAd/A,

Gt
pq

(r, /)ii
pq

J2aP
2n

0
P

R

0

t*
pq

(r@, /@)A
pq

t
pq

(r@, /@)r@ dr@d/@"0,

Q"($¸, /, r), Q@"($¸, /@, r@) , QA"($¸, /A, rA)3p$.

By using the orthonormality property of the normal modes t
pq

, the second
integral of the last equation of the previous system is equal to unity, and then

i
g
g
g
j
g
g
g
k

(D#k2
ipq

)WI 1(M; M@, u
pq

)"0, M"(z, /, r), M@"(z@, /@, r@)3X0
i
,

L
r
WI 1(Q; Q@, u

pq
)"o

c
hu2

pq
<0(Q; Q@, u

pq
), Q"(z, /, R), Q@"(z@, /@, R)3R ,

L
z
WI 1(Q; Q@, u

pq
)G +

mnOpq

t
mn

(r, /)is
mnP

2n

0
P

R

0

t*
mn

(rA, /A)WI 1(QA; Q@, u
pq

)rA drAd/A,

GA
pq

t
pq

(r, /)ii
pq

J2a"0,

Q"($¸, /, r), Q@"($¸, /@, r@) , QA"($¸, /A, rA)3p$.
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Classically, this homogeneous Helmholtz equation with non-homogeneous
boundary conditions can be brought back to a non-homogeneous Helmholtz
equation with homogeneous boundary conditions. Let us de"ne H(M; M@, u

pq
) as

a twice-di!erentiable function that satis"es

i
g
g
g
j
g
g
g
k

L
r
H(Q; Q@, u

pq
)"o

c
hu2

pq
<0(Q; Q@, u

pq
), Q"(z, /, R), Q@"(z@, /@, R)3R ,

L
z
H(Q; Q@, u

pq
)G +

mnOpq

t
mn

(r, /)is
mnP

2n

0
P

R

0

t*
mn

(rA, /A)WI 1(QA; Q@, u
pq

)rAdrAd/A,

GA
pq

t
pq

(r, /)ii
pq

J2a ,

Q"($¸, /, r), Q@"($¸, /@, r@) , QA"($¸, /A, rA)3p$.

Then WI 1(M; M@, u
pq

) is the solution of

i
g
g
j
g
g
k

(D#k2
ipq

)WI 1(M; M@, u
pq

)"!(D#k2
ipq

)H (M; M@, u
pq

), M"(z, /, r), M@"(z@, /@, r@)3X0
i
,

L
r
WI 1(Q; Q@, u

pq
)"0, Q"(z, /, R), Q@"(z@, /@, R)3R ,

L
z
WI 1(Q; Q@, u

pq
)G +

mnOpq

t
mn

(r, /)is
mnP

2n

0
P

R

0

t*
mn

(rA, /A)WI 1(QA; Q@, u
pq

)rA drAd/A"0,

Q"($¸, /, r), Q@"($¸, /@, r@) , QA"($¸, /A, rA)3p$.

To obtain a unique solution to this boundary value problem, the second member
of the Helmholtz equation must be orthogonal to the non-trivial solution of the
homogeneous problem t

pq
. This solvability condition reads

PX
i
0

(D#k2
ipq

)H(M; M@, u
pq

)t*
pq

(M) dM"0.

By using Green's theorem, this equation is transformed into

PR

L
nQ

H(Q; M@, u
pq

)t*
pq

(Q)!L
n
t*

pq
(Q)H(Q; M@, u

pq
) dQ

#Pp$
L
nQ

H(Q; M@, u
pq

)t*
pq

(Q)!L
n
t*
pq

(Q)H(Q; M@, u
pq

) dQ"0.

Now, applying the boundary conditions, one gets

PR

o
c
hu2

pq
<0(Q; Q@, u

pq
)t*

pq
(Q) dQ#Pp$

t*
pq

(Q)MA
pq

t
pq

(r, /)ii
pq

J2a

# +
O

t
mn

(r, /)is
mnP $

t*
mn

(rA, /A)H(QA; Q@) dQAHdQ"0.

mn pq p
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By using again the orthonormality property of the normal modes t
mn

(r, /), the
solvability condition reads

o
c
hu2

pqP&
<0 (Q; Q@, u

pq
)t*

pq
(Q) dQ#2A

pq
ii

pq
J2a"0.

After a little algebra, one gets the value of A
pq

de"ned with "nite amplitude for all
frequencies:

A
pq
"!

u2
pq

o
c
h:R(CO u(eN

r
d
Q{

(Q)))
r
t

pq
(Q)*dQ

2ii
pq

J2a#u2
pq

o
c
h:&(CO u(eN

r
t

pq
(Q)))

r
t

pq
(Q) dQ

. (A7)
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